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Abstract
We discuss the dependence of the results of renormalized perturbation theory
for dilute polymer solutions on the choice of the uncritical manifold where the
perturbation series are evaluated. Special emphasis is given to the influence
of polydispersity corrections on the results of one and two loop calculations.
For monodisperse solutions we establish that after a Borel resummation the
dependence on the choice of the uncritical manifold decreases when higher
orders of the expansion are taken into account.

1. Introduction

In the now more than 30 years since de Gennes’ observation [1] that the correlations of a
single long polymer chain can be mapped on the critical correlations of an m-component
ferromagnetic spin model in the limit m → 0, the application of dilatation symmetry to dilute
polymer solutions has led to a rich and mature body of knowledge, which is able to explain the
universal features found in experimental data. These developments have been reviewed in the
book of des Cloizeaux and Jannink [2] and with special emphasis on excluded volume effects
in the monograph of Schäfer [3].

Since exact results for realistic models are available only in space dimension d = 2,
quantitative calculations for the physically interesting case d = 3 rely heavily on the use of
perturbation series expansions. Unfortunately, the expansion parameter diverges in the critical
limit of polymer length n → ∞. This can be remedied by mapping the result of perturbation
theory on a uncritical region of the parameter space, called the uncritical manifold, with the
help of the renormalization group (RG). The RG maps the physical variables’ chain length
n, monomer size l and excluded volume strength βe onto a set of renormalized variables
(nR, lR, u) on the uncritical manifold, where low order perturbation theory for a given scaling
function can be safely evaluated yielding reasonable results. The determination of the uncritical
manifold, by choosing the renormalized segment size lR, introduces a number of numerical
parameters into the theory (one for each relevant macroscopic length scale), which we will
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fix in what follows by fitting our results for universal ratios to values measured independently
in simulations or experiments. Once those parameters are fixed, the theory has to prove
its quantitative accuracy by making predictions for additional measurable quantities. The
necessity of such a fit procedure is clearly due to the error which we introduce by calculating
the perturbation expansion only to low order. With this approximation we break the strict
scale invariance of the full renormalized scaling function under the RG map and introduce a
dependence of the results on the choice of the renormalized length scale lR. We expect that the
influence of the choice of the uncritical manifold will vanish gradually when more and more
orders of perturbation theory are taken into account. One main goal of the present paper is to
check this expectation for those few observables, namely the mean square end–end distance
R2

e , the radius of gyration R2
g and the second virial coefficient A2, where the perturbation

series have been pushed to six, four and three loop order respectively. Since most of the more
complex observables of interest have been evaluated only at zero or one loop level, we spend
some effort to describe the optimal choice of the renormalized manifold at the one loop level as
discussed in [3]. We also discuss how one can handle polydispersity effects within the theory,
an important topic when we try to explain experimental measurements, which never work with
purely monodisperse samples.

Our paper is organized as follows. In section 2 we define our polymer model and the
observables of interest. We also review some basic notations of polydispersity. In section 3 we
review the RG map and discuss the choice of the renormalized manifold at the one loop
level. In section 4 we present the results of higher order perturbation theory and check
their dependence on the choice of the uncritical manifold before and after a suitable Borel
resummation. Section 5 gives a conclusion of our findings. A collection of perturbative results
is presented in the appendix.

2. Polymer model and observable quantities

We represent a polymer chain of n segments in a simple spring and bead model by n + 1
beads, linearly connected to their neighbours by elastic springs with mean distance l and
interacting with each other via a repulsive δ-pseudo-potential of strength βe. This leads to the
Hamiltonian [3]

H {�r j} = 1

4l2

n+1∑

j=1

(�r j − �r j−1)
2 + (4πl2)d/2βe

∑

j, j ′
δ(�r j − �r j ′), (2.1)

where �r j is the position vector of bead number j and d denotes the space dimension. The
partition function

Z =
∫

D[r ]e−H {�r j } with D[r ] =
n∏

j=0

ddr j

(4πl2)d/2
(2.2)

for dimension d > 2 can be calculated only in a perturbation expansion which orders in the
parameter z = βen2−d/2. Similar considerations hold for averages of observables, defined as

〈O〉 = 1

Z

∫
D[r ]Oe−H {�r j }. (2.3)

In what follows we focus our interest on the mean square end–end distance

R2
e = 〈(�rn − �r0)

2〉 (2.4)

and the radius of gyration

R2
g =

〈
1

n + 1

n∑

j=0

(�r j − �Rcm)
2

〉
, (2.5)
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where �Rcm = 1
n+1

∑n
j=0 �r j is the centre of mass vector of the molecule. The second virial

coefficient can be read off from the virial expansion of either the osmotic pressure�

� = cp + 1
2 A�2 c2

p + O(c3
p), (2.6)

where cp is the polymer concentration, or of the forward scattering intensity

cI −1(q = 0, cp, N) = 1

Nw
+

AS
2

Nw
c + O(c2), (2.7)

where c = cp N is the monomer concentration and Nw is the weight-averaged chain length
defined as below. The two definitions of A�2 and AS

2 coincide for monodisperse systems but
differ for a general chain length distribution P(n). Both quantities can be obtained from the
second virial coefficient A2(n1, n2) for two chains of lengths n1 and n2 according to [3] by
averaging over the chain length distribution P(n):

A�2 =
∑

n1,n2

P(n1)P(n2)A2(n1, n2) (2.8)

AS
2 =

∑

n1,n2

n1n2

N2
P(n1)P(n2)A2(n1, n2), (2.9)

where N = ∑
n n P(n) is the average chain length. Two other standard chain length averages

that show up in the literature are the weight average Nw and the z-average Nz , defined as

Nw := 1

N

∑

n

P(n)n2 = N p2 and Nz := 1

N Nw

∑

n

P(n)n3 = p3

p2
N. (2.10)

Nw and Nz can be expressed as indicated above in terms of the average chain length N and the
second and third moments p2 and p3 of the reduced chain length distribution p(y) defined by

P(n) = 1

N
p

( n

N

)
. (2.11)

3. Renormalization

In order to map our perturbative results to the uncritical manifold we introduce renormalized
variables according to

l = λlR (3.1)

n = λ−2nR Zn(u) (3.2)

βe = λεu Zu(u), (3.3)

where ε = 4 − d and the scaling parameter λ ∈ [0, 1] measures the degree of dilatation. For
finite polymer concentration cp and finite momentum q , we define renormalized quantities via
cpR = cpl3

R and qR = qlR. The Z -factors Zn = Z2
Zφ

and Zu = Z4
Zφ

have been calculated for

φ4 field theory in the minimal subtraction scheme to five loop order (see [4] and references
therein) and are given in the appendix for ε = 1. The dependence of the Z -factors on a change
of the scaling parameter λ can be obtained via integration from the flow equations

λ
du

dλ
= W (uR) (3.4)

λ
d

dλ
ln

(
Z2

Zφ

)
= 2 − 1

ν(u)
(3.5)

λ
d

dλ
ln(Zφ) = η(u), (3.6)
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where the Wilson function W (u), except for a linear dependence on ε, and the exponent
functions η and ν depend only on the renormalized coupling u. Since the perturbation series
for W, η, and ν are only asymptotic, they have to be resummed to yield reliable results. We
follow the work of Schloms and Dohm [5], who resummed the flow functions at the upper
critical dimension dc = 4 and then evaluated the flow equations and renormalized scaling
functions directly in d = 3 dimensions, without further expansion in ε. Besides the Gaussian
fixed point at u = 0, the Wilson function W (u) has a nontrivial fixed point at u∗ = 0.364,
which is related to the excluded volume limit n → ∞, βe > 0. The correlation length exponent
ν, which governs the power law R2 ∼ N2ν for R2

g and R2
e in the excluded volume limit, takes

the fixed point value ν(u) = 0.588. To measure the distance from the excluded volume fixed
point, we introduce the parameter f = u

u∗ . We can now use our perturbative results for the
observables Re, Rg and AS

2 to form universal ratios, i.e. combinations depending only on f and
global characteristics of the system like space dimension or polydispersity. Such quantities
reduce to pure numbers at the fixed points of the RG. Just like the critical exponents, they are
universal in the sense that they are independent of the microstructure of the underlying model.
From our three observables we can form two independent ratios

R2
g/e = 6R2

g

R2
e

and ψS =
(

d

12π

)d/2 AS
2

Rd
g
, (3.7)

where the prefactor of the interpenetration ratio ψS, which roughly measures the volume that
a chain excludes for other chains, has purely historical reasons. For polydisperse systems,
where AS

2 and A�2 differ, another ratio can be introduced by using A�2 .

3.1. Choice of the uncritical manifold in one loop approximation

As a general recipe, the renormalized length scale lR should be chosen smaller than the smallest
macroscopic length scale important for the observable of interest. For example, it does not
make sense to choose lR > Rg, because then the whole coil would be smaller than one
effective segment of size lR. In lowest order perturbation theory we find R2

g = p3

p2
l2 N , which

after renormalization gives

R2
g = l2

R NzR . (3.8)

Thus the choice NzR ≈ 1 fixes lR as lR ≈ Rg. Note that with this procedure we introduce some
polydispersity dependence into the choice of the uncritical manifold. We will discuss this later
in the section. Now finite polymer concentration cp and finite momentum q both introduce
additional characteristic length scales into the system [3], and depending on their values and
the observable of interest it can be necessary to choose ld

R ≈ 1
2 f cp

or lR ≈ 1
q to fix lR in the

appropriate limits. Following [3] we choose the relation (3.9) to interpolate smoothly between
the above limits:

q2
R

q2
0

+
n0

NzR
+ f

cR

c0
= 1, (3.9)

where q2
R = q2l2

R is the renormalized external momentum and cR = ũcpld
R NR is

the renormalized segment concentration with the numerical constant ũ = (4π)(d/2) u∗
2 . The

constants q2
0 , n0 and c0 (one for each relevant length scale) have been introduced in (3.9), since

our qualitative arguments fix lR only up to a constant and the dependence of our results on the
parameters q2

0 , n0 and c0 displays the approximation we made by truncating the perturbation
expansion at low order. In what follows we will concentrate on the dilute low momentum limit
cp → 0, q → 0, where (3.9) reduces to NzR = n0. In this limit the choice of n0 fixes the
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Figure 1. Zero and one loop results for the universal ratio �∗ plotted versus n0: the dot–dashed
curves display the results for a monodisperse ensemble and the full curves those for an exponential
ensemble. The dashed line shows the one loop result for an exponential ensemble evaluated with
the choice NR = n0.

renormalized length scale to lR = Rg/
√

n0, as follows from (2.8). Thus we further study the
n0-dependence of our observables in order to find an optimal choice. For readers interested in
the determination of q2

0 and c0, we refer to [3]. Following [3] we use the fixed point value of
the interpenetration ratio �∗ = �(S)(u∗) to fix n0, since it depends on NzR already in the zero
loop approximation.

For a monodisperse ensemble (p2 = 1) and an exponential ensemble (p2 = 2) the zero
and one loop approximations are displayed in figure 1, together with the most precise value
�∗ = 0.247 obtained from monodisperse computer simulations [6], which is in fair agreement
with the best experimental value�∗ = 0.245±0.005 [7]. While the zero loop result reproduces
the simulation result for a value n0 = 1.85, the one loop result allows the choices n0 = 0.53
and 2.95 to fit the simulation data. In [3] the value n0 = 0.53 was chosen mainly because of the
unreasonably large polydispersity corrections that occur in �∗, when the relation NR = n0 is
used for the determination of the uncritical manifold. We can resolve this problem by absorbing
the polydispersity dependence partially in the choice NzR = n0 (corresponding to lR ≈ Rg) of
the uncritical manifold. For the one loop result of the exponential ensemble both choices of
the uncritical manifold are included in figure 1. One finds that our choice NzR = n0 allows us
to choose n0 = 2.95 with a value for�∗

e = 0.112 consistent with the zero loop result 0.11 [3]
for n0 = 1.85 and close to the value 0.12 found with NR = n0 = 0.53 in [3]. Unfortunately,
at present neither experimental nor simulation data on the polydispersity dependence of� are
available. We prefer the choice n0 = 2.95 since it enhances the numerical precision of several
one loop results for intra-chain properties. As an example we consider two universal ratios σR

and δ which have been studied in the literature on di-block copolymers. We divide the chain
into two blocks of relative length x1 = n1

n and x2 = n2
n , which may have different chemical

composition. This setup allows for two different values u11 and u22 of the intra-block excluded
volume repulsion and for a third value u12 of the inter-block excluded volume repulsion. The
ratios σR and δ are defined as

σR = R2
e

R2
e1H + R2

e2H

and δ = R2
g − x1 R2

g1H − x2 R2
g2H

2x1x2(R2
g1H + R2

g2H )
, (3.10)
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Figure 2. One loop and exact results for the universal ratios σ ∗
R and δ∗ for equal block size

x1 = x2 = 1
2 plotted versus n0.

where the subscript H denotes zero inter-block coupling u12 = 0. Thus the mean squared end–
end vectors R2

ei H and the radii of gyration R2
gi H for i ∈ {1, 2} of both blocks simply reduce to R2

e

and R2
g of a homopolymer of length ni . At the symmetrical fixed point u12 = u11 = u22 = u∗,

the ratios σR and δ can be evaluated explicitly. Using the asymptotic power law R ∼ nν we
find [8]

σ ∗
R = 1

x2ν
1 + (1 − x1)2ν

and δ∗ = 1 − x2ν
1 − (1 − x1)

2ν

2x1(1 − x1)(x2ν
1 + (1 − x1)2ν)

. (3.11)

For other values of the excluded volume strength we can evaluate σR and δ only perturbatively,
and the result again depends on the choice of the renormalized manifold. The radii of gyration
of both blocks are additional length scales which have to be considered in the choice of the
renormalized manifold. In the definition of σR and δ one observes that in the limit xi → 0
the contribution of the smaller block xi can be neglected compared to the contribution of the
larger block. Thus we can safely use N1zR + N2zR = n0 for the determination of the uncritical
manifold, as in the homopolymer case.

Figure 2 displays the n0-dependence of the one loop results for σR and δ for the symmetric
case x1 = x2 = 1

2 , together with the exact values of equation (3.11). One finds that the choice
n0 = 2.95 reproduces the exact values within a accuracy of 2%. In figure 3 we plotted the
exact and one loop results for the fixed point values σ ∗

R and δ∗ as a function of the relative block
size x1. The perturbative results deviate from the exact ones (using ν = 0.588 from high order
perturbation theory) by less than 2% over the whole interval of block compositions. Similar
results have been found for a one loop calculation of the persistence length Lp [9].

The limitations of the one loop approximation can be judged from the result for the
n0-dependence of the universal ratio R2

g/e displayed in figure 5. For n0 = 2.95, the value
R2∗

g/e = 0.983 is still closer to the value 1 for noninteracting chains than to the value 0.96
obtained in high precision simulations of self-avoiding chains at the excluded volume fixed
point [10].
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Figure 3. One loop (dashed) and exact (full lines) results for the universal ratios σ ∗
R and δ∗ for

n0 = 2.95 plotted versus x1.

4. Higher orders of perturbation theory

For only a few polymer observables, namely Rg, Re and A2, the loop expansion has been
pushed beyond the two loop level. Nickel and co-workers calculated Re up to the order of six
loops [11, 12] and Rg to four loops [13] and A2 to two loops for a monodisperse ensemble.
Their results enable us to investigate the n0-dependence of the universal ratio R2

g/e up to the
four loop level. In order to further study the behaviour of �S we calculated the three loop
contribution to the second virial coefficient A2(n, n) [14], which allows the evaluation of �S

at the three loop level for a monodisperse ensemble. In addition we calculated the two loop
contribution to R2

g and � for arbitrary polydispersity.
First we want to test whether a consistent choice of n0 is possible at the two loop level.

Inspecting figure 4 we find that the two loop result for�∗ reproduces the value�∗ = 0.247 for
a value of n0 = 4.78. Furthermore, one observes that the n0-dependence of �∗ is rather weak
for a range of values n0 ∈ [0.5, 4] but at a value of �∗ ≈ 0.18–0.2 well below the desired
result. Using the condition NzR = n0 leads to �∗

e = 0.085 for the exponential ensemble,
somewhat below the zero and one loop results. The choice NR = n0 (dashed curve) instead
does not allow for a consistent fit with reasonable polydispersity corrections. With the choice
n0 = 4.78 we can read off the prediction R2∗

g/e = 0.963 from the two loop result in figure 5,
a value that already compares well with the Monte Carlo result 0.96 and with the two loop
epsilon expansion result 0.959 [15].

Beyond the two loop level, the three and four loop results for R2∗
g/e displayed in figure 5

show the formation of a plateau at the value 0.963 for n0 ∈ [2, 6], nursing the hope that the
choice of n0 becomes less important with increasing order of perturbation theory. On the other
hand, our three loop result for�∗ in figure 6 exhibits a pronounced n0-dependence that seems
to contradict our expectation. We can trace back this behaviour to the asymptotic nature of
the renormalized perturbation series, which have to be resummed in order to extract sensible
information beyond the two loop level.

4.1. Resummation

It is well known that the perturbation expansions in quantum field theory usually are only
asymptotic series with zero radius of convergence [16]. This gives rise to an exponential
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Figure 4. Two loop results for �∗ plotted versus n0. The upper full curve corresponds to a
monodisperse ensemble. The lower full and dashed curves correspond to a exponential ensemble
evaluated with NzR = n0 and NR = n0 respectively.
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Figure 5. One to four loop results for the universal ratio R2∗
g/e plotted versus n0.

growth of the expansion coefficients. The leading behaviour of the coefficients in high order
perturbation theory can be obtained from a semiclassical calculation as [17, 18]

βk = k!(−a)kkbc

(
1 + O

(
1

k

))
, (4.1)

where in d = 4 the coefficients are a = 3
2 for our definition of the coupling [3, 18] and

b = 2 + M for a correlation function involving M polymer chains. With the knowledge of the
asymptotic behaviour we perform a standard Borel resummation procedure of our perturbation
series for R2

e , R2
g and AS

2 as described in [16, 19]. The coefficients b0 � b + 3
2 and α involved

in the resummation procedure (see [19] for details) have been tuned to b0 = 6 and α = 1 in
order to give optimal convergence of the approximations. Note that, despite the fact that we
evaluate the perturbation series directly in d = 3 dimensions, we were forced to use the d = 4
result a = 3

2 in order to obtain good convergence of the resummed series. This may be traced
back to the fact that for the renormalization we used Z -factors which have been defined via
minimal subtraction of ε poles at dimension d = 4(ε = 0). These Z -factors also are given as
asymptotic series and the stronger exponential growth of their coefficients seems to dominate
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Figure 6. One to three loop results for the universal ratio �∗ plotted versus n0.
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Figure 7. Resummed one to four loop results for the universal ratio R2∗
g/e plotted versus n0.

the asymptotics of the renormalized series at d = 3. A similar procedure was used in the
calculation of universal quantities of the O(m) symmetric φ4 model [5].

Figures 7 and 8 display the resummed results for R2∗
g/e and �∗ obtained via (3.7) from

the resummed functions for R2
e , R2

g and AS
2. For both ratios the variation as a function of n0

is greatly reduced—the range of n0 in figures 7 and 8 is extended by a factor 5 compared to
figures 5 and 6. The most prominent effects can be seen in the two and three loop results for� .
The plateau region, where the two loop result was insensitive to n0, is shifted close to the value
expected from simulations. The variation of the three loop result is greatly reduced, being
now fairly insensible to n0 in the interval n0 ∈ [2, 30] for a value around 0.247. The effects of
the resummation on R2∗

g/e are less dramatic. Mainly the value of the plateau already present in
figure 5 is shifted from 0.963 to 0.96 and thus is now in full accord with the simulation results.

5. Conclusions

We studied the dependence of several universal ratios on the choice of the uncritical manifold,
where the evaluation of renormalized perturbation theory gives sensible results. We found
that the inclusion of the polydispersity dependence of the zero loop result for the radius of



S2022 A Ostendorf and J S Hager

10 20 30 40 50

0.1

0.2

0.3

0.4

0.5

Figure 8. Resummed one to three loop results for the universal ratio �∗ plotted versus n0.

gyration into the choice of the uncritical manifold allows for the choice n0 = 2.95 leading to
reasonable polydispersity corrections and to improved one loop estimates for several universal
ratios. Furthermore, we find this procedure necessary in order to obtain a consistent choice of
n0 at the two loop level. It would be interesting to check our predictions on the polydispersity
dependence of �∗ by comparison with precise experimental or simulation data. Beyond the
two loop approximation we found that a resummation of the asymptotic series is mandatory to
establish the increasing insensitivity of the results on the choice of n0, which was expected on
theoretical grounds. The resummed series for �∗ and R2∗

g/e display extended plateau regions
where the n0-dependence is weak, at values �∗ = 0.247 and R2∗

g/e = 0.96, in full agreement
with experimental measurements and Monte Carlo simulations.

Appendix. Perturbative results

A.1. Bare monodisperse results

The perturbation series for R2
e , R2

g and A2(n, n) evaluated directly in d = 3 dimensions are

R2
e = 6R2

0

(
1 +

4

3
z +

(
28π

27
− 16

3

)
z2 + 6.296 8797z3 − 25.057 2507z4

+ 116.134 785z5 − 594.716 63z6

)
, (A.1)

Rg = R2
0

(
1 +

134

105
z +

(
1247π

1296
− 536

105

)
z2 + 6.564 897z3 − 26.706 29z4

)
, (A.2)

A2 = (4π)3/2 R3
0 z

(
1 − 32

(
7 − 4

√
2
)

15
z + 13.927 83z2 − 80.30z3

)
, (A.3)

where R2
0 = nl2 and z = βen1/2.

A.2. Z-factors

The Z -factors as obtained from φ4 field theory [4] evaluated for d = 3 are

Zn = 1 − u − 7
8 u2 − 1.270 8333u3 − 5.299 419u4 + 40.504 065u5, (A.4)
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Zu = 1
2 (1 + 4u + 43

4 u2 + 43.639 293u3 + 7.439 240u4), (A.5)

Z
1
2
n = 1 − 1

2 u − 9
16 u2 − 0.916 666 67u3 − 3.266 246 159u4. (A.6)

A.3. Copolymer quantities

The Z -factors for the copolymer case at one loop order evaluated for d = 3 are [3, 20]

Z (aa′)
u (uaa′) = 1

2

(
1 + (uaa + ua′a′) + 2uaa′ + O(u2)

)
(A.7)

Z (a)N (uaa) = 1 − uaa + O(u2). (A.8)

The direct evaluation of renormalized perturbation theory in d = 3 dimensions leads to [21]

R2
ga = l2

RnaR

(
1 + uaa

(
67

105
n1/2

aR − 1

)
+

uaān1/2
aR

105

(
384κ7/2

aR + 448κ5/2
aR

+ 13 − 384κ4
aR + 640κ3

aR + 176κ2
aR − 32κaR + 13

(1 + κaR)1/2

))
(A.9)

for the radius of gyration of block a, where κaR = nāR
naR

denotes the renormalized ratio of the
length of both blocks (the index ā labels the other block) and to [21]

R2
g = l2

R(n1R + n2R)

(
1 +

u11

105(1 + κ1R)3
((67 + 196κ1R)n

1/2
1R − (105 + 315κ1R))

+
u22

105(1 + κ2R)3
((67 + 196κ2R)n

(1/2)
2R − (105 + 315κ2R))

+
u12(n1R + n2R)

1/2

105(1 + κ1R)4
(67(1 + κ4

1R)− 67(1 + κ1R)
1/2(1 + κ7/2

1R )

− 196(1 + κ1R)
1/2(κ1R + κ5/2

1R ) + 268(κ1R + κ3
1R) + 402κ2

1R)

)
(A.10)

for the radius of gyration of the whole chain. For the renormalized mean squared end–end
distances we find [21]

R2
ea = 6l2

RnaR

(
1 + uaa

(
2

3
n1/2

aR − 1

)
+

2uaā

9
n1/2

aR

(
1 − 8κ3/2

aR +
8κ2

aR + 4κaR − 1

(1 + κaR)1/2

))
(A.11)

R2
e = 6l2

R(n1R + n2R)

(
1 + u11

2
3 n1/2

1R − 1

1 + κ1R
+ u22

2
3 n1/2

2R − 1

1 + κ2R

+
2u12

3
(n1R + n2R)

1/2

(
1 − 1 + κ3/2

aR

(1 + κaR)3/2

))
. (A.12)

A.4. Renormalized polydisperse results

For a general chain length distribution p(y)we find the following two loop result for the second
virial coefficients Aπ2 and AS

2, where m = 0 corresponds to Aπ2 and m = 1–AS
2. The results

are obtained by integrating the two loop expression for the second virial coefficient A2(n1, n2)

given in [12] according to (2.8) and (2.9). The polydispersity correction cm
A vanishes for a

monodisperse ensemble.

(4πlR)
− 3

2 Am
2 p̃−2

m+1 = ā2(v, cm
A )

= u∗

2
f N2

R

(
1 + u∗ f

(
2 − √

NR
16

15

(
7 − 4

√
2
))

+ u∗2 f 2
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×
(

2 − 88

15

√
NR(7 − 4

√
2) +

NR

4

(
1622

15
− 131π

12

− 1024
√

2

15
+

32π

3
ln 2 +

125

6
arctan

3

4

))
+ cm

A

)
, (A.13)

cm
A = −16

15

√
NRu∗ f

[
5

p̃m+1

∫ ∞

0
dy ym+ 3

2 p(y) +
2 p̃m

p̃2
m+1

∫ ∞

0
dy ym+ 5

2 p(y)

− 1

p̃2
m+1

∫ ∞

0
dy1

∫ ∞

0
dy2 ym

1 ym
2 (y1 + y2)

5
2 p(y1)p(y2)− 7 + 4

√
2

]

+ u∗2 f 2

[
2

(
1

p̃2
m+1

− 1

)
− 88

15

√
NR

(
5

p̃m+1

∫ ∞

0
dy ym+ 3

2 p(y)

+
2 p̃m

p̃2
m+1

∫ ∞

0
dy ym+ 5

2 p(y)

− 1

p̃2
m+1

∫ ∞

0
dy1

∫ ∞

0
dy2 ym

1 ym
2 (y1 + y2)

5
2 p(y1)p(y2)− 7 + 4

√
2

)

+
NR

4

{
64

3 p̃2
m+1

(∫ ∞

0
dy ym+ 3

2 p(y)

)2

+

(
128

3
− 17π

3

)
p̃m+2

p̃m+1

+
406

15 p̃2
m+1

∫ ∞

0
dy1 y

m+ 5
2

1 p(y1)

∫ ∞

0
dy2 y

m+ 1
2

2 p(y2)

+

(
256

15
− 63π

12

)
p̃m+3 p̃m

p̃2
m+1

− 256

15 p̃2
m+1

∫ ∞

0
dy1

∫ ∞

0
dy2

(
2y

m+ 3
2

1 ym+1
2

+ y
m+ 5

2
1 ym

2 + y
m+ 1

2
1 ym+2

2

)√
y1 + y2 p(y1)p(y2)

+
1024

√
2

15
+

8π

3 p̃2
m+1

∫ ∞

0
dy1

∫ ∞

0
dy2(y

m+3
1 ym

2

+ 3ym+2
1 ym+1

2 ) ln(y1 + y2)p(y1)p(y2)

− 8π p̃m

3 p̃2
m+1

∫ ∞

0
dy ym+3 ln(y)p(y)

− 8π

p̃m+1

∫ ∞

0
dy ym+2 ln(y)p(y)− 32

3
ln(2)

+
1

p̃2
m+1

∫ ∞

0
dy1

∫ ∞

0
dy2

(
10ym+2

1 ym+1
2 +

65

6
ym+3

1 ym
2

)

× arctan

(
3

2

(√
y1

y2
+

√
y2

y1

)−1)
p(y1)p(y2)

+
1

p̃2
m+1

∫ ∞

0
dy1

∫ ∞

0
dy2

[(
6ym+2

1 ym+1
2 +

21

2
ym+3

1 ym
2

)

× arctan

(
2

5

(√
y1

y2
−

√
y2

y1

))
p(y1)p(y2)

]
− 125

6
arctan

(
3

4

)}]
. (A.14)

The radius of gyration for a polydisperse solution can be obtained from the small momentum
behaviour of the density correlation function [3]. This leads to the following average of the
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radius of gyration R2
g(n) of an isolated chain [13]:

R2
g[p] =

∫ ∞

0
dy

p(y)

p̃2
y2 R2(y N)

= l2
R NR

p̃3

p̃2

(
1 +

(
a1

√
NR

2
− 1

)
u +

(
a2 NR

4
+

5

4
a1

√
NR − 7

8

)
u2

+

(
a3 N

3
2

R

8
+

3

2
a2 NR +

61

32
a1

√
NR − 61

48

)
u3

+

(
a4 N2

R

16
+

19

16
a3 N

3
2

R +
83

16
a2 NR

+

(
Zu(3) + Z

1
2
n (3)− 967

48

)√
NR

2
a1 + Zn(4)

)
u4 + cg

)
(A.15)

cg = −a1
√

NR

2

(
1 −

∫ ∞

0
dy

p(y)

p̃3
y

7
2

)
u

−
(

a2 NR

4

(
1 − p̃4

p̃3

)
+

5

4
a1

√
NR

(
1 −

∫ ∞

0
dy

p(y)

p̃3
y

7
2

))
u2

−
(

a3 N
3
2

R

8

(
1 −

∫ ∞

0
dy

p(y)

p̃3
y

7
2

)
+

3

2
a2 NR

(
1 − p̃4

p̃3

)

+
61

32
a1

√
NR

(
1 −

∫ ∞

0
dy

p(y)

p̃3
y

7
2

))
u3 −

(
a4 N2

R

16

(
1 − p̃5

p̃3

)

+
19

16
a3 N

3
2

R

(
1 −

∫ ∞

0
dy

p(y)

p̃3
y

7
2

)
+

83

16
a2 NR

(
1 − p̃4

p̃3

)

+

(
Zu(3) + Z

1
2
n (3)− 967

48

)
a1

√
NR

2

(
1 −

∫ ∞

0
dy

p(y)

p̃3
y

7
2

))
u4, (A.16)

where the coefficients ak, Zu(k) and Z
1
2
n (k) are taken from (A.2), (A.5) and (A.6) respectively.

Again the polydispersity correction cg vanishes for a monodisperse ensemble.
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